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Abstract. The purpose of this study is to create a computerized system that can
automatically evaluatemicrostructure images of steelmaterials, specifically focus-
ing on ferrite, using aConvolutionalNeuralNetwork (CNN)model. Steelmaterials
play a crucial role in our everyday lives, and their mechanical properties and relia-
bility are determined by theirmicrostructure, which is influenced by heat treatment
and processing. It is essential to ensure the quality of steel, as problems can arise if
the microstructure and mechanical properties are not adequately assessed before
shipping. To accomplish this, the study involved preparing four different steel
specimens with varying material properties and heating conditions, which were
then photographed using a digital camera. The proposed CNN model was tested
and validated to accurately classify the ferrite substances, and it was found that
even a simple CNN structure could achieve high accuracy in image classifica-
tion. The implementation of this system will alleviate the burden of human visual
inspection. The paper provides detailed information on the preparation of the steel
specimens, the method used to capture the images, the structure of the proposed
CNN model, the experimental conditions, the validation methods employed, and
the results obtained.

Keywords: Steel · Ferrite ·Microstructure · CNN

1 Introduction

Steel materials are indispensable for our life infrastructures such as buildings, land
transportation infrastructure, maritime infrastructure such as ships, andmagnetic circuits
of generators and induction motors.

Given thewide range of uses for steel, steel quality control is essential. Steel mechan-
ical properties and reliability depend on their microstructure, controlled by heat treat-
ment and processing. For instance, quenching is a common heat treatment method used
to transform the structure of steel materials into the martensite phase, improving hard-
ness and strength. However, the strength would be insufficient if the necessary part did
not transform into the martensite phase. If the microstructure and mechanical proper-
ties are not sufficiently assessed before shipping, it could cause significant problems.
The metal additive manufacturing techniques employed in 3D printing simultaneously
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control shape and microstructure [1, 2]. Therefore, the quality control of steel prod-
ucts is important throughout the manufacturing process, including metal 3D printers.
Mechanical properties are generally evaluated by destructive tests such as tensile and
bending tests. In addition, a human evaluator inspects optical microscopic images of
the microstructure. However, since the evaluators must check the optical microscope
images with their eyes, the physical burden is a problem, especially when dealing with
many samples. Evaluation of microstructure images requires experience. Therefore, the
present paper aims to develop an automatic evaluation system for microstructure images
ofmetallicmaterials obtained fromopticalmicroscope usingCNN (CNN:Convolutional
Neural Network), which has high capabilities in image recognition [3]. To evaluate var-
ious materials, CNN can automatically acquire the important features from many steel
material texture images. The proposed system will not only reduce the human visual
inspection burden, but also save time, and thereby allows for rapid feedback to the
manufacturing process.

Several studies [4–6] in material science have utilized Neural Network (NN) and
Convolutional Neural Network (CNN). Specifically, study [4] aims to find important
processing factors e.g., laser power using NN to compound aluminum and magnesium
alloys. Additionally, the study [5] focuses on accurately segmenting crystal grain regions
in aluminum alloy images for evaluation purposes, using semantic segmentation. In the
study [5], CNN is employed to generate feature maps. Lastly, in the study [6], GNN
(GNN: Graph NN) is applied to discover new material compositions.

There is a study [7] that evaluates the microstructure of steel materials. However,
there are still few studies that automatically evaluate the size of ferrite grains and the
differences in microstructure within the same sample. In the present paper, the authors
aim to automatically evaluate steel microstructure images using a simple CNNmodel, as
a first step towards realizing an automatic steel quality evaluation system. We prepared
four steel specimens by changing the material properties and heating conditions.

In Sect. 2, we will discuss the preparation of the specimens and the method of image
capture. Section 3 will describe the structure of the simple CNN proposed in this paper.
In Sect. 4, we will discuss the evaluation experiments of the CNN. Finally, in Sect. 5,
we will present the conclusions and discuss future challenges.

2 Preparation of Specimen and Pictures

Two alloys, Fe-1Mn-0.1C and Fe-1Mn-0.1C-1Si, were selected and prepared by weigh-
ing pure Fe, pure Mn, carbon, and pure Si to achieve these compositions, using the
vacuum arc melting method. Two different heat treatments were applied to these two
compositions of alloys, resulting in four types of specimens with different ferrite grain
sizes, as followings.

Specimen A: Fe-1Mn-0.1C, annealed at 1150 °C for 1 h, then furnace cooled.
Specimen B: Fe-1Mn-0.1C-1Si, annealed at 1150 °C for 1 h, then furnace cooled.
Specimen C: Fe-1Mn-0.1C, annealed at 1150 °C for 1 h, then quenched in ice water,
followed by tempering at 750 °C for approx. 2 minutes, then air cooling again.
Specimen D: Fe-1Mn-0.1C-1Si, annealed at 1150 °C for 1 h, then quenched in ice water,
followed by tempering at 750 °C for 5 min, then air cooling again.
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The specimenswere cut out using an electrical dischargemachine, then polishedwith
waterproof abrasive paper, followed by electrolytic polishing. They were then etched to
produce the final specimens. These specimens were observed under an Olympus BX51
microscope with a 100× magnification, using a DP-22 digital camera. The images of
Specimens A to D are shown in Fig. 1.

Fig. 1. Pictures of four specimens captured by microscope.

Specimen A has a composition of Fe-1Mn-0.1C and underwent annealing at 1150 °C
for 1 h. Specimen B has a composition of Fe-1Mn-0.1C-1Si and underwent annealing
at 1150 °C for 1 h. Specimen C has a composition of Fe-1Mn-0.1C and underwent
annealing at 1150 °C for 1 h, followed by quenching after approx. 2 min of tempering.
SpecimenD has a composition of Fe-1Mn-0.1C-1Si and underwent annealing at 1150 °C
for 1 h, followed by quenching after 5 min of tempering. Both specimen C and D were
cooled in air after tempering.
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The image in Fig. 1 is a monochrome image in TIFF format with a resolution of
1440 × 1920 pixels and unsigned int 8bit depth. This was converted into an image in
bitmap format with unsigned int 8 bit depth. For each of the Specimens A, B, C, and D,
ten images were obtained. Next, as shown in Fig. 2, each image was divided into four
parts, generating 4 × 10 = 40 images for each specimen.

Fig. 2. Each picture is divided into four images.

As shown in Fig. 2, the top left 1200 × 1800 section was divided into four parts,
obtaining four images of 600 × 900 pixels from one original image. By doing this
for each of Specimens A, B, C, and D, a total of 160 image data were obtained. A
Convolutional Neural Network (CNN) was constructed to determine whether each of
the 160 images belonged to Specimen A, B, C, or D.

3 CNN Structure

As shown in Fig. 3, a Convolutional Neural Network (CNN) was constructed that takes
as input an image of size 200 × 300 × 1 (reduced to one-third of the original size) and
outputs the classification class of the specimen.
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Fig. 3. Schematic of CNN classifying four specimens.

The details of the calculations in Fig. 3 are shown in Table 1.

Table 1. Details of operations at each layer

Layer name Operation Filters’ set number Filter Size Stride Output

Input - - - - 200 × 300 × 1

Conv1 Conv
->BatchNorm
->ReLU

50 2 × 2 × 1 1 × 1 199 × 299 × 50

Max pool Max pooling - 3 × 3 2 × 2 99 × 149 × 50

Conv2 Conv
->BatchNorm
->ReLU

50 2 × 2 × 50 1 × 1 98 × 148 × 50

Conv3 Conv
->BatchNorm
->ReLU

50 2 × 2 × 50 2 × 2 49 × 74 × 50

Fc1 Affine
->ReLU

- - - 500

Fc2 Affine
->ReLU

- - - 250

Fc3 Affine
->Soft-Max

- - - 4

The Convolutional Neural Network (CNN) [3] is a machine learning algorithm pro-
posed by Yann LeCun, which allows for high-accuracy image recognition with low
computational cost. By performing Batch Normalization (BatchNorm) [8] after convo-
lution operations, it is possible to improve the efficiency of learning, omit processes such
as Drop Out [9], and simplify the system. Furthermore, by using the ReLU [10] function
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as the transfer function, it is possible to prevent gradient loss of the error function and
enhance the classification performance.

4 CNN Validation

This section explains an experiment to validate the CNN shown in Fig. 3 using 160
image data. It is not always feasible to obtain a sufficient amount of data to evaluate
the performance of a machine learning model. For instance, collecting image data like
medical data from CT scans or images taken with an electron microscope can often
be challenging. For these reasons, several methods have been proposed for evaluating
models with limited data [11].

In this study, we were able to obtain 160 images to validate the CNN model, but
this is not sufficient as training data for deep learning models. Therefore, we repeatedly
performed random subsampling validation. The dataset contains 40 images each of
Specimens A to D. Five images from each class were randomly selected and set aside as
test data, while the remaining 140 images were used for training the CNN.After training,
the unused 20 images were used as a test set to verify the classification accuracy of the
CNN. In this study, this process was performed 10 times to evaluate the performance of
the CNN.

Table 2 shows an overview of the learning conditions for the CNN. Horizontal and
vertical flipping of the training images is performed at randomprobabilities. This process
allows the model to virtually learn from a larger number of images [12].

Table 2. Training conditions for CNN

Items Value

Solver SGDM (Stochastic Gradient Descent with Momentum)

Learn Rate 10−3

Total Iterations 30

Mini batch Size 512

Augmentation Random Left-Right Reflection (50%),
Random Top-Down Reflection (50%)

CPU Intel core i9 12900K

Main Memory 128 GB

OS Windows 11 Pro 64bit

Development Language MathWorks, MATLAB

GPU Nvidia RTX A6000 (VRAM 48 GB, 10752 cuda cores)

The training uses the backpropagation method [13], and the cross-entropy error [14]
is used for the calculation of loss. Figure 4 shows the transition of loss and accuracy
during training for each of the 10 trials.
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Fig. 4. Training result.

As shown in Fig. 4 (a), the loss has decreased to the order of 0.01, confirming that
there are no issues with the training. Also, from Fig. 4 (b), it can be seen that the accuracy
has reached 100% for all 10 trials, confirming that the model can correctly classify all
the training data.

The accuracy when the 20 test images, which were not used in the training, were
input into the trained CNN is shown in Fig. 5(a). The average accuracy was 94.5%. Also,
the confusion matrix for all trials is shown in Fig. 5(b).
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Fig. 5. Test result.

It can be seen that Specimens A and B, which are similar, are being misclassified.
Even with such a shallow CNN, it was confirmed that it is possible to distinguish images
of different steel crystalswith high accuracy. In the future, itwill be necessary to construct
a CNN to determine the quality of crystal compositions.

5 Conclusion

In this study, we attempted to distinguish between four types of crystals created using dif-
ferent compositions and heat treatments using a Convolutional Neural Network (CNN).
Initially, different heat treatments were performed on specimens of different materials.
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The surfaces of these were polished, and images were taken with an optical microscope
for each of the four different specimens, resulting in ten images per specimen.

To verify whether crystals can be classified using a CNN, a large amount of data
is needed. Therefore, each image was divided into four parts to increase the amount
of image data. Also, during training, we devised a method to virtually increase the
number of training images by performing processes such as flipping images vertically
and horizontally. Despite the small amount of training data, the loss was confirmed to
have decreased to the order of 0.01, indicating that adequate learning was achieved.

We conducted 10 trials using 20 test images that were not used in the training
process, and in all cases,CNNcould accurately classify into four categories. These results
demonstrate the feasibility of constructing a Convolutional Neural Network (CNN) to
determine the quality of crystal composition. The next challenge is to increase the data
and construct a model that can estimate strength.
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